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Who am |?

m Professor for Management Science and Machine Learning
m At VU since 2023
m Before: Professor at the Technical University of Munich.
m Background
m Mathematics, Statistics & Machine Learning
m Operations Research
m Research
m Stochastic Programming & Reinforcement Learning
m Optimal decisions for generation and flexibility
m Stochastic thermal-electric power flow in low-temperature, low voltage grids
m Smart charging of electric vehicles

Purpose of this talk

m Review state of the art Al methods relevant to energy systems modeling.
m Which methods to use for what?
m Discuss possible applications in the Dutch grid.
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A Taxonomy of Artificial Intelligence Methods



The Zoo of Al Methods
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What is the difference?

Traditional Machine Learning
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Requirements
m Manageable data requirements
m Small teams
m Standard hardware

Deep Learning

Requirements
m Large training sets
m Considerable expertise
m Massive compute for training



Outline

Machine Learning for Tabular Data in Electricity Grids



Forecasting with Tabular Data

Classic ML methods outperform neural networks on tabular data.
m Lack of locality
m Mixed feature types
m Lack of prior knowledge

Shwartz-Ziv, R., & Armon, A. Tabular data: Deep learning is not
— all you need. Information Fusion, 2022.



https://www.sciencedirect.com/science/article/abs/pii/S1566253521002360
https://www.sciencedirect.com/science/article/abs/pii/S1566253521002360

Methods

X

Simple linear regression

Polynomial regression
LASSO

Dalasel
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Decision trees
m CART
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hx)20,9=1 "\ ‘,"';lccisio'n boundary

h(x) < 0,5 = —1

Support vector machines (SVM)
Non-linear transformations

...........................

Ensemble methods
Random forest
Boosted trees




Case: Great Energy Predictor Il

m Predict building energy usage
m Kaggle competition with more than 3600 teams competing
m Teams that scored in the top 5% mostly used gradient boosted trees

= kaggle
Create

Home
Competitions.
Datasets

Models
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Discussions
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© s s o 100% W LightGBM
Xgboost
) o W Catboost
ASHRAE - Great Energy Predictor llI 80% Scikit-learn
How much energy will a building consume? | Others
Keras
60% W PyTorch
Overview Data Code Models Discussion Leaderboard  Rules Prophet
M TensorFlow
. 40% LightMORT
Overview
i 20%
0%
Description ® Model Library
Miller, C., Hao, L., & Fu, C. Gradient boosting machines and care-
—_— ful pre-processing wgrk best: Ashrae great energy predictor Il
— lessons learned. arXiv 2022.



https://arxiv.org/abs/2202.02898
https://arxiv.org/abs/2202.02898
https://arxiv.org/abs/2202.02898

Importance of Different Phases of Model Building
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5 - Extremely important
. oo 4 - Very important
Pre-processing 3 - Moderately important
2 - Somewhat important
m 1- Not important

Feature Engineering -
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Validation- I
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Process Phase

m Preprocessing, feature engineering, and validation the most important tasks
m Choice of concrete model often not that important



Case: Wind Power Forecasting

boosting-based approach for short-and medium-term wind tur-

Sobolewski, R. A., Tchakorom, M., & Couturier, R. Gradient
bine output power prediction. Renewable Energy, 2023.

m Short-and medium-term wind power forecasting (48 - 235 hours ahead)
m Based on weather related variables (humidity, pressure, ...)

m Involved data preprocessing and feature engineering

m Ensemble methods outperform neural networks

Learning algorithm RMSE [kW] MAE [kW]
CatBoost 76.18 54.87
LightBoost 76.84 55.24
XGBoost 77.02 55.61
LSTM 78.73 57.85
DecisionTree 111.26 79.38

RandomForest 77.97 56.14



https://doi.org/10.1016/j.renene.2022.12.040
https://doi.org/10.1016/j.renene.2022.12.040
https://doi.org/10.1016/j.renene.2022.12.040
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Physics Informed Neural Networks for Power Systems



From Regression to Neural Networks

Goal: Estimate a functions y = () that maps features - to labels

Simplest Machine Learning Model: Linear regression
=f(x)=b+w

with parameters ¢ = (b, w)

Introducing Non-Linearity: Add non-linear activation function a

= fy () = by + wipa(boo + Woo <) + wira(bot + Wo1 ) + wigal(boz + Woo )

Shallow neural network with 3 neurons.

w...weights b ...biases a...activation function



From Regression to Neural Networks

Simplest Activation: Rectified Linear Unit (ReLU)
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Plots from Prince (2024)



Universal Approximation
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Universal Approximation Theorem
Every sufficiently nice function can be approximated to arbitrary precision by a shallow

neural network with enough neurons.

m Not very surprising

m Curse of dimensionality
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Deep Neural Networks
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: features (positions, time, velocities, loads, voltages, ...)

: predictions for the labels
m Connections: weights
m Activation function
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Training a Neural Network

m Choose parameters (weights, , ...) to minimize a loss function
m Measures average deviations of predictions from true labels
m Example: Mean squared error

1 N
L(w,0) =MSE= 5> (u(+) - ).

i=1

m Use stochastic gradient descent for this optimization

m Large networks with many parameters allow for expressiveness

Caveat

Large networks need a lot of data to train.

m Success depends on domain specific tricks
= Image recognition: convolutional layers and pooling
m Large language models: attention layers
m Time series: long short-term memory layers



An Example form Fluid Dynamics
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Stachenfeld et al. Learned coarse models for efficient turbulence
— simulation. ICLR(2022).

m Turbulent fluid dynamics

m Chaotic system evolving based on
Navier-Stokes PDE

m Neural network trained on only 16
simulations

m Outperforms traditional methods

How is that possible?



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}



https://arxiv.org/abs/2112.15275

An Example form Fluid Dynamics

— simulation. ICLR(2022).

[Stachenfeld et al. Learned coarse models for efficient turbulence]

2D Incompressible Decaying Turbulence (IT-2D) Trajectory #0
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m Turbulent fluid dynamics

Ground Truth

m Chaotic system evolving based on
Navier-Stokes PDE

m Neural network trained on only 16
simulations

Prediction
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m Outperforms traditional methods

A — Ground Truth
— prediction

s o om

amplitude

How is that possible?
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https://arxiv.org/abs/2112.15275

Physics Informed Neural Networks (PINNSs)
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m £ depends on both the outputs (u, v, w, p) as well as deviations from physical laws
m Use collocation points for training

m Work well with limited data

m Can be quickly evaluated



The Single Machine Infinite Bus Model
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Misyris, G. S., Venzke, A., & Chatzivasileiadis, S. Physics-
— informed neural networks for power systems. |IEEE power & en-
ergy society general meeting, 2020.

2
Swing Equation: f;(t,P) = M%g + Dg—i + BVyVesin(6) — P=0
rotor angle
generator inertia constant
dampening constant
... susceptance between generator and grid
, Ve ... grid and bus voltage magnitudes
mechanical power at the generator

TSmO~

Aim: Predict rotor angles after disturbances.


https://doi.org/10.1109/PESGM41954.2020.9282004
https://doi.org/10.1109/PESGM41954.2020.9282004

The Single Machine Infinite Bus Model

N., Ny
MSE = 3= |u(th, 2l) — u'P + 3= |f (¢, 2%)?

N _— N e

MSE, MSE;

m N, is the number of training data points for rotor angles
m N is the number of collocation points used for training

m Used to assure compliance with swing equation
m Arbitrarily sampled in spatio-temporal domain

Data: Simulate accurate 100 trajectories using ode45 in 0.1s resolution. Setting
Vg=Ve=1pu.and B=0.2for T in [0, 20]



The Single Machine Infinite Bus Model

m Use N, = 40 randomly sampled training points and N; = 8000 collocation points.
m 5 layer neural network with 10 neurons per hidden layer
® U=, x = P, w by numeric differentiation
m Simulations
m 28 times faster than with ODE solver
= Small error
m Need not be sampled sequentially

| Exact —— -'Predictedl
P =0.17 [p.u.] P =0.18 [p.u.]

4 [rad]

0 s 10 15 20 0 5 10 15 20
Time [s] Time [s]
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Estimate State of the Grid with Limited Measurements

Ostrometzky, J., Berestizshevsky, K., Bernstein, A., & Zussman,
—_— G. Physics-Informed Deep Neural Network Method for Limited
Observability State Estimation. 2020.

Input: Complete measurements up to point t — 1, incomplete measurements at point ¢
Goal: Estimate state of the grid (voltages) at time ¢
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https://arxiv.org/abs/1910.06401
https://arxiv.org/abs/1910.06401

Estimate State of the Grid with Limited Measurements
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time step
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LSTM
2 layers
Tanh activation
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Regressor

Fully Connected
1 Layer
Tanh activations
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Estimate State of the Grid with Limited Measurements
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(a) Magnitude{v(t)}
m PINN outperforms traditional methods
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Discussion
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© What are the greatest challenges you face in your work?

@ Did you already work with Machine Learning?

® What do you think Machine Learning could do for you?

© What do you think Machine Learning cannot do?



david wozabal
d.wozabal@vu.nl
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