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Who am I?

Professor for Management Science and Machine Learning
At VU since 2023
Before: Professor at the Technical University of Munich.

Background
Mathematics, Statistics & Machine Learning
Operations Research

Research
Stochastic Programming & Reinforcement Learning
Optimal decisions for generation and flexibility
Stochastic thermal-electric power flow in low-temperature, low voltage grids
Smart charging of electric vehicles

Purpose of this talk

Review state of the art AI methods relevant to energy systems modeling.

Which methods to use for what?

Discuss possible applications in the Dutch grid.
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The Zoo of AI Methods
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What is the difference?

Traditional Machine Learning

Requirements

Manageable data requirements

Small teams

Standard hardware

Deep Learning

Requirements

Large training sets

Considerable expertise

Massive compute for training
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Forecasting with Tabular Data

Classic ML methods outperform neural networks on tabular data.

Lack of locality

Mixed feature types

Lack of prior knowledge

q Shwartz-Ziv, R., & Armon, A. Tabular data: Deep learning is not
all you need. Information Fusion, 2022.
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Methods

Simple linear regression

Polynomial regression

LASSO

Support vector machines (SVM)

Non-linear transformations

Decision trees

CART

Ensemble methods

Random forest

Boosted trees
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Case: Great Energy Predictor III

Predict building energy usage
Kaggle competition with more than 3600 teams competing
Teams that scored in the top 5% mostly used gradient boosted trees

q
Miller, C., Hao, L., & Fu, C. Gradient boosting machines and care-
ful pre-processing work best: Ashrae great energy predictor III
lessons learned. arXiv 2022.
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https://arxiv.org/abs/2202.02898
https://arxiv.org/abs/2202.02898
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Importance of Different Phases of Model Building

Preprocessing, feature engineering, and validation the most important tasks

Choice of concrete model often not that important
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Case: Wind Power Forecasting

q
Sobolewski, R. A., Tchakorom, M., & Couturier, R. Gradient
boosting-based approach for short-and medium-term wind tur-
bine output power prediction. Renewable Energy, 2023.

Short-and medium-term wind power forecasting (48 - 235 hours ahead)

Based on weather related variables (humidity, pressure, . . . )

Involved data preprocessing and feature engineering

Ensemble methods outperform neural networks
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https://doi.org/10.1016/j.renene.2022.12.040
https://doi.org/10.1016/j.renene.2022.12.040
https://doi.org/10.1016/j.renene.2022.12.040
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From Regression to Neural Networks

Goal: Estimate a functions y = f (x) that maps features x to labels y .

Simplest Machine Learning Model: Linear regression

y = fφ(x) = b + wx

with parameters φ = (b,w)

Introducing Non-Linearity: Add non-linear activation function a

y = fφ(x) = b1 + w10a(b00 + w00x) + w11a(b01 + w01x) + w12a(b02 + w02x)

Shallow neural network with 3 neurons.

y . . . labels x . . . features w . . . weights b . . . biases a . . . activation function
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From Regression to Neural Networks

Simplest Activation: Rectified Linear Unit (ReLU)

Plots from Prince (2024)10/22



Universal Approximation

Plots from Prince (2024)

Universal Approximation Theorem

Every sufficiently nice function can be approximated to arbitrary precision by a shallow
neural network with enough neurons.

Not very surprising

Curse of dimensionality
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Deep Neural Networks
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Input layer: features (positions, time, velocities, loads, voltages, . . . )
Hidden layers
Output layer: predictions for the labels
Connections: weights
Activation function
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Training a Neural Network

Choose parameters (weights, biases, ...) to minimize a loss function
Measures average deviations of predictions from true labels
Example: Mean squared error

L(w , b) = MSE =
1
N

N∑
i=1

(u(xi)− u i)2.

Use stochastic gradient descent for this optimization

Large networks with many parameters allow for expressiveness

Caveat
Large networks need a lot of data to train.

Success depends on domain specific tricks
Image recognition: convolutional layers and pooling
Large language models: attention layers
Time series: long short-term memory layers
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An Example form Fluid Dynamics

q Stachenfeld et al. Learned coarse models for efficient turbulence
simulation. ICLR(2022).

Turbulent fluid dynamics

Chaotic system evolving based on
Navier-Stokes PDE

Neural network trained on only 16
simulations

Outperforms traditional methods

How is that possible?
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Physics Informed Neural Networks (PINNs)
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L depends on both the outputs (u, v ,w ,p) as well as deviations from physical laws
Use collocation points for training
Work well with limited data
Can be quickly evaluated
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The Single Machine Infinite Bus Model

q
Misyris, G. S., Venzke, A., & Chatzivasileiadis, S. Physics-
informed neural networks for power systems. IEEE power & en-
ergy society general meeting, 2020.

Swing Equation: fδ(t ,P) = M
∂2δ

δt2 + D
∂δ

∂t
+ BVgVe sin(δ)− P = 0

δ . . . rotor angle
M . . . generator inertia constant
D . . . dampening constant
B . . . susceptance between generator and grid
Vg , Ve . . . grid and bus voltage magnitudes
P . . . mechanical power at the generator

Aim: Predict rotor angles after disturbances.
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https://doi.org/10.1109/PESGM41954.2020.9282004
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The Single Machine Infinite Bus Model

Nu is the number of training data points for rotor angles
Nf is the number of collocation points used for training

Used to assure compliance with swing equation
Arbitrarily sampled in spatio-temporal domain

Data: Simulate accurate 100 trajectories using ode45 in 0.1s resolution. Setting
Vg = Ve = 1 p.u. and B = 0.2 for T in [0,20]
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The Single Machine Infinite Bus Model

Use Nu = 40 randomly sampled training points and Nf = 8000 collocation points.
5 layer neural network with 10 neurons per hidden layer
u = δ, x = P, ω by numeric differentiation
Simulations

28 times faster than with ODE solver
Small error
Need not be sampled sequentially
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Estimate State of the Grid with Limited Measurements

q
Ostrometzky, J., Berestizshevsky, K., Bernstein, A., & Zussman,
G. Physics-Informed Deep Neural Network Method for Limited
Observability State Estimation. 2020.

Input: Complete measurements up to point t − 1, incomplete measurements at point t
Goal: Estimate state of the grid (voltages) at time t
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https://arxiv.org/abs/1910.06401
https://arxiv.org/abs/1910.06401


Estimate State of the Grid with Limited Measurements

L = Ldata + Lphysics =
1
N

N∑
i=1

(
||v(xi)− v i ||2 + λ|| diag(v(xi))Y ∗v(xi)

∗ − si ||2
)
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Estimate State of the Grid with Limited Measurements

PINN outperforms traditional methods
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Discussion

1 What are the greatest challenges you face in your work?

2 Did you already work with Machine Learning?

3 What do you think Machine Learning could do for you?

4 What do you think Machine Learning cannot do?
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